316 research outputs found

    Warpage issues in large area mould embedding technologies

    Get PDF
    The need for higher communications speed, heterogeneous integration and further miniaturisation have increased demand in developing new 3D integrated packaging technologies which include wafer-level moulding and chip-to-wafer interconnections . Wafer-level moulding refers to the embedding of multiple chips or heterogeneous systems on the wafer scale. This can be achieved through a relatively new technology consisting of thermal compression moulding of granular or liquid epoxy moulding compounds. Experimental measurements from compression moulding on 8” blank wafers have shown an unexpected tendency to warp into a cylindrical-shape following cooling from the moulding temperature to room temperature. Wafer warpage occurs primarily as a result of a mismatch between the coefficient of thermal expansion of the resin compound and the Si wafer. This paper will delve into possible causes of such asymmetric warpage related to mould, dimensional and material characteristics using finite element (FE) software (ANSYS Mechanical). The FE model of the resin on wafer deposition will be validated against the measurement results and will be used to deduce appropriate guidelines for low warpage wafer encapsulation.peer-reviewe

    On the quasi-periodic nature of magnetopause flux transfer events

    Get PDF
    The recurrence rate of flux transfer events (FTEs) observed near the dayside magnetopause is discussed. A survey of magnetopause observations by the ISEE satellites shows that the distribution of the intervals between FTE signatures has a mode value of 3 min, but is highly skewed, having upper and lower decile values of 1.5 min and 18.5 min, respectively. The mean value is found to be 8 min, consistent with previous surveys of magnetopause data. The recurrence of quasi-periodic events in the dayside auroral ionosphere is frequently used as evidence for an association with magnetopause FTEs, and the distribution of their repetition intervals should be matched to that presented here if such an association is to be confirmed. A survey of 1 year's 15-s data on the interplanetary magnetic field (IMF) suggests that the derived distribution could arise from fluctuations in the IMF Bz component, rather than from a natural oscillation frequency of the magnetosphere-ionosphere system

    On the multispacecraft determination of periodic surface wave phase speeds and wavelengths

    Get PDF
    Observations of surface waves on the magnetopause indicate a wide range of phase velocities and wavelengths. Their multispacecraft analysis allows a more precise determination of wave characteristics than ever before and reveal shortcomings of approximations to the phase speed that take a predetermined fraction of the magnetosheath speed or the average flow velocity in the boundary layer. We show that time lags between two or more spacecraft can give a qualitative upper estimate, and we confirm the unreliability of flow approximations often used by analyzing a few cases. Using two‐point distant magnetic field observations and spectral analysis of the tailward magnetic field component, we propose an alternative method to estimate the wavelength and phase speed at a single spacecraft from a statistical fit to the data at the other site

    Progressive transformation of a flux rope to an ICME

    Full text link
    The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).Comment: Solar Physics (in press

    Toxic tea : case report

    Get PDF
    A young gentleman presents with deliberate unidentified plant ingestion, complaining of abdominal pain and vomiting. He is found to have junctional rhythm at 37 beats per minute. On further questioning, he is noted to have ingested Nerium oleander leaf tea extract as part of a ritual. The mechanism of action, diagnosis and management of oleander poisoning is discussed in this case report. Awareness to the common oleander plant and its toxicity in the Maltese islands and around the Mediterranean is emphasized.peer-reviewe

    An aerodynamic study on flexed blades for VAWT applications

    Get PDF
    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an ’egg-beater shape’ with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.peer-reviewe

    Advancing In Situ Modeling of ICMEs: New Techniques for New Observations

    Full text link
    It is generally known that multi-spacecraft observations of interplanetary coronal mass ejections (ICMEs) more clearly reveal their three-dimensional structure than do observations made by a single spacecraft. The launch of the STEREO twin observatories in October 2006 has greatly increased the number of multipoint studies of ICMEs in the literature, but this field is still in its infancy. To date, most studies continue to use on flux rope models that rely on single track observations through a vast, multi-faceted structure, which oversimplifies the problem and often hinders interpretation of the large-scale geometry, especially for cases in which one spacecraft observes a flux rope, while another does not. In order to tackle these complex problems, new modeling techniques are required. We describe these new techniques and analyze two ICMEs observed at the twin STEREO spacecraft on 22-23 May 2007, when the spacecraft were separated by ~8 degrees. We find a combination of non-force-free flux rope multi-spacecraft modeling, together with a new non-flux rope ICME plasma flow deflection model, better constrains the large-scale structure of these ICMEs. We also introduce a new spatial mapping technique that allows us to put multispacecraft observations and the new ICME model results in context with the convecting solar wind. What is distinctly different about this analysis is that it reveals aspects of ICME geometry and dynamics in a far more visually intuitive way than previously accomplished. In the case of the 22-23 May ICMEs, the analysis facilitates a more physical understanding of ICME large-scale structure, the location and geometry of flux rope sub-structures within these ICMEs, and their dynamic interaction with the ambient solar wind

    Force balance at the magnetopause determined with MMS: Application to flux transfer events

    Full text link
    The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (≀10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross‐calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force‐free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non‐force‐free signatures.Key PointsDemonstrates flux transfer events are not necessarily force freeFinds that in non‐force‐free FTEs, the magnetic force is balanced by the ion pressure gradient force; the electron pressure can be ignoredMinimum variance analysis on the magnetic pressure gradient force gives the best estimate of the axial direction of flux ropesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135579/1/grl55264_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135579/2/grl55264.pd

    Ionospheric ion upwelling in the wake of flux transfer events at the dayside magnetopause

    Get PDF
    The effects of flux transfer events (FTE) on the dayside auroral ionosphere are studied, using a simple twin-vortex model of induced ionospheric plasma flow. It is shown that the predicted and observed velocities of these flows are sufficient to drive nonthermal plasma in the F region, not only within the newly opened flux tube of the FTE, but also on the closed, or "old" open, field lines around it. In fact, with the expected poleward neutral wind, the plasma is more highly nonthermal on the flanks of, but outside, the open flux tube: EISCAT observations indicate that plasma is indeed driven into nonthermal distributions in these regions. The nonthermal plasma is thereby subject to additional upforce due to the resulting ion temperature anisotropy and transient expansion due to Joule heating and also to ion accelerations associated with the FTE field aligned current system. Any upflows produced on closed field lines in the vicinity of the FTE are effectively bunched-up in the "wake" of the FTE. Observations from the AMPTE-UKS satellite at the magnetopause reveal ion upflows of energy ∌100 eV flowing out from the ionosphere on closed field lines which are only found in the wake of the FTE. Such flows are also only found shortly after two, out of all the FTEs observed by AMPTE-UKS. The outflow from the ionosphere is two orders of magnitude greater than predicted for the "classical" polar wind. It is shown that such ionospheric ion flows are only expected in association with FTEs on the magnetopause which are well removed from the sub-solar point-either towards dusk or, as in the UKS example discussed here, towards dawn. It is suggested that such ionospheric ions will only be observed if the center of the FTE open flux tube passes very close to the satellite. Consequently, we conclude the ion upflows presented here are probably driven by the second of two possible source FTEs and are observed at the satellite with a lag after the FTE which is less than their time-of-flight
    • 

    corecore